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Abstract

Traumatic brain injury (TBI) initiates an expansive biochemical insult that is largely responsible 

for the long-term dysfunction associated with TBI; however, current clinical treatments fall short 

of addressing these underlying sequelae. Pre-clinical investigations have used stem cell 

transplantation with moderate success, plagued by staggeringly low survival and engraftment rates 

(2–4%). As such, providing cell transplants with the means to better dynamically respond to 

injury-related signals within the transplant microenvironment may afford improved transplantation 

survival and engraftment rates. The chemokine stromal cell-derived factor-1α (SDF-1α) is a 

potent chemotactic signal that is readily present after TBI. In this study, we sought to develop a 

transplantation vehicle to ultimately enhance the responsiveness of neural transplants to injury-

induced SDF-1α. Specifically, we hypothesize that a hyaluronic acid (HA) and laminin (Lm) 

hydrogel would promote 1. upregulated expression of the SDF-1α receptor CXCR4 in neural 

progenitor/stem cells (NPSCs) and 2. NPSC migration in response to SDF-1α gradients. We 

demonstrated successful development of a HA-Lm hydrogel and utilized standard protein and 

cellular assays to probe NPSC CXCR4 expression and NPSC chemotactic migration. The findings 

demonstrated that NPSCs significantly increased CXCR4 expression after 48 hrs of culture on the 

HA-Lm gel in a manner critically dependent on both HA and laminin. Moreover, the HA-Lm 

hydrogel significantly increased NPSC chemotactic migration in response to SDF-1α at 48 hrs, an 

effect that was critically dependent on HA, laminin and the SDF-1α gradient. Therefore, this 

hydrogel serves to 1. prime NPSCs for the injury microenvironment and 2. provide the appropriate 

infrastructure to support migration into the surrounding tissue, equipping cells with the tools to 

more effectively respond to the injury microenvironment.
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1. Introduction

The impact of traumatic brain injury (TBI) has only recently garnered recognition from 

many social and healthcare communities despite its long-standing prevalence in the U.S. 

Approximately 1.7 million people sustain a TBI annually and the costs associated with TBI 

create a $76.5 billion strain on the American healthcare system and economy [1–3]. Long-

term dysfunctions associated with TBI (e.g. chronic traumatic encephalopathy and motor 

impairment) [4–6] are largely due to the secondary, biochemical injury that follows the 

primary, mechanical insult; however, no clinical treatments directly target these underlying 

pathologies associated with TBI. Pre-clinical studies have investigated stem cell 

transplantation as a means to mitigate the effects of the secondary injury, but have suffered 

from staggeringly low rates of cell survival and engraftment (2–4%) [7–10]. This major 

limitation is mainly attributed to the cytotoxic injury microenvironment created by a 

systemic and neural inflammatory response, which is mediated by inflammatory cells that 

infiltrate the blood brain barrier and locally activated glia, respectively [11–13]. Activated 

glia also secrete factors that promote the endogenous repair response including the 

chemokine stromal cell-derived factor 1α (SDF-1α), which has been shown to play a critical 

role in recruitment of endogenous neural progenitor/stem cells (NPSCs) to the site of injury 

[14,15]. Exploiting this endogenous SDF-1α signaling paradigm for exogenous transplant 

strategies may serve to increase NPSC migration and engraftment into the surrounding 

tissue following transplantation. As such, we aimed to develop a neurotransplantation 

platform that promotes exogenous cell response to injury-relevant SDF-1α signaling.

Tissue-engineered constructs have been used previously in an attempt to create a permissive 

transplant microenvironment; often in the form of hydrogels as their mechanical and cellular 

adhesion properties are easily tuned to mimic native neural tissue. The extracellular matrix 

(ECM) of native brain tissue is largely comprised of proteoglycans (e.g. lecticans), 

hyaluronic acid and tenascin C and R [16,17]. Specifically, the glycosaminoglycan 

hyaluronic acid (HA) is prominently expressed near neural stem cell niches and neuroblast 

migration routes (within the subventricular zone and rostral migratory stream, respectively) 

[18]. HA-based hydrogels are therefore a natural extension into mimicking the native neural 

ECM, and numerous groups have reported that HA-based hydrogels support survival, 

differentiation and proliferation of neural cell types in vitro and in vivo [19–22]. However, 

the effect of HA on NPSC migration remains largely unexplored despite the knowledge that 

normal physiological NPSC migration in vivo follows an HA-rich route [18]. Given these 

findings, the benefit of elucidating the relationship between HA and NPSC migration 

becomes evident.

Recent cell signaling studies have identified crosstalk between HA and the injury-related 

chemokine SDF-1α in mesenchymal (MSCs) [23] and hematopoietic stem cells (HSCs) 

[24,25] that resulted in heightened responsiveness to SDF-1α gradients. For example, MSCs 
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cultured on HA substrate upregulate the SDF-1α receptor CXCR4, indicative of signaling 

crosstalk between HA and SDF-1α-axes [23]. The probability for similar HA-SDF-1α 

crosstalk mechanisms to exist in NPSCs is high, as NPSCs inherently express CXCR4 and 

the primary HA receptor CD44 [26,27]. Previous HA hydrogel platforms for neural tissue 

engineering considered HA a “blank slate” where tethered protein or peptide-binding motifs 

serve as the primary cellular interfacing domains. However, we postulate that rather than 

serving as a “blank slate”, HA will actively contribute to promoting NPSC chemotactic 

migration through HA-SDF-1α crosstalk.

Knowledge of HA-SDF-1α crosstalk will significantly inform next generation hydrogel 

systems capable of biochemically priming neurotransplants to dynamically respond to the 

local injury environment. We acknowledge that HA alone, however, is not sufficient to 

promote NPSC adhesion and migration effectively [28]. Thus, incorporation of an ECM 

protein known to support NPSC migration may provide the appropriate infrastructure for 

NPSCs to respond to SDF-1α gradients. We have previously reported that laminin and 

SDF-1α work synergistically to increase NPSC migration in vitro [29]. Therefore, in this 

work we have investigated a dual-purpose hydrogel system comprised of both HA (to 

modulate CXCR4 expression) and laminin (to provide adhesive cues). We hypothesize that 

HA-laminin hydrogels will 1. increase NPSC responsiveness to SDF-1α gradients and 2. 

provide a substrate that facilitates NPSC migration in response to injury relevant SDF-1α 

gradients, thereby equipping NPSCs with tools to dynamically respond to the neural injury 

environment.

2. Materials and Methods

2.1. Materials for polymer synthesis

3,3 Dithiopropionic acid (DTPA), anhydrous methanol, anhydrous ethanol, hydrazine 

hydrate (HH), hexane, concentrated sulfuric acid, ethyl ether, hydrochloric acid (HCl), 

sodium hydroxide (NaOH), sodium chloride (NaCl), hyaluronic acid sodium salt (HA) from 

Streptococcus equi, N-3-dimethylaminopropyl-N′-ethylcarbodiimide hydrochloride (EDC), 

5,5'-dithiobis-2-nitrobenzoic acid (Ellman’s reagent), and laminin-111 were purchased from 

Sigma Aldrich (St. Louis, MO, USA). Dithiothreitol (DTT) was purchased from Gold 

Biotechnology (St. Louis, MO, USA). Poly(ethylene glycol) divinyl sulfone (PEGDVS) 5 

kDa was purchased from JenKem Technology USA (Allen, TX, USA).

2.2. HA-Lm Gel Formation

Dithiopropionic dihydrazide (DTPH) was synthesized from DTPA and HH in a two-step 

reaction as previously described [30]. High molecular weight HA was functionalized with 

thiol groups through conjugation of the terminal hydrazides on DTPH to the carboxyl groups 

on HA using EDC chemistry and subsequent reduction of disulfide bonds using DTT as 

previously described [31]. 1H NMR spectra was collected in D2O (400 MHz Varian liquid 

state NMR, Agilent Technologies, Santa Clara, CA, USA), and Ellman’s reagent test was 

used to quantify the concentration of conjugated thiols [32]. HA-S was sterilized by ethylene 

oxide gas and stored at −20°C.
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HA-S hydrogels were formed via Michael-type addition crosslinking with PEGDVS as 

previously reported [33]. Briefly, PEGDVS was dissolved in media at a concentration that 

yielded an equimolar ratio of thiol-reactive groups to thiols present on the HA-S. HA-S was 

dissolved in pH 3 mitogenic growth factor-free culture media (formulation described under 

section 2.2 NPSC isolation and culture) and titrated between pH 7 and pH 8 with 1 M NaOH 

using phenol red as a colorimetric indicator of pH. The HA-S solution was mixed with an 

equal volume of crosslinker solution and vortex mixed for 15 seconds prior to plating.

Laminin was determined to have free thiols available for binding by Ellman’s reagent test, 

presumably from its cysteine-rich β chain (data not shown). Laminin was conjugated to 

PEGDVS via Michael addition at 0.01 wt% and 0.10 wt% respectively in PBS for 15 

minutes at room temperature. The solution was purified by dialysis against Tris-buffered 

saline to remove unbound PEGDVS and freeze dried. Capacity for covalent immobilization 

of laminin was evaluated by 1H NMR spectra in D2O. Spectra were analyzed for ratio of 

PEG groups to vinyl groups and compared to non-reacted PEGDVS spectra to observe 

differences in vinyl groups available for binding. Based on data presented in section 3.1, 

laminin was incorporated within the gel at pre-determined concentrations by mixing with 

PEGDVS media solution and allowed to react 15 minutes at room temperature prior to 

mixing with HA-S solution, where PEGDVS concentration was adjusted to account for 

laminin incorporation.

2.3. NPSC isolation and culture

NPSCs were isolated from the medial and lateral germinal eminences of E14.5 C57BL/6 

mice based on previously published protocols [34] and in accordance with a protocol 

approved by the Institutional Animal Care and Use Committee at Arizona State University. 

Briefly, mice were anesthetized at 3% isoflurane, rapidly decapitated, and fetuses were 

extracted from both uterine horns. Fetal tissue was rinsed in cold Leibovitz medium (Life 

Technologies, Carlsbad, CA) at each stage of the germinal eminence dissection. The 

germinal eminences were rinsed with sterile, cold Leibovitz medium before mechanical 

dissociation in working NPSC medium (glucose (6 mg/mL, Acros Organics, Geel, 

Belgium), HEPES buffer (5mM), progesterone (62.9 ng/mL), putrescine (9.6 µg/mL), 

heparin (1.83µg/mL), B27 growth supplement (1×, Life Technologies), epidermal growth 

factor (20 ng/mL), fibroblast growth factor (5 ng/mL), insulin (5 µg/mL), transferrin (5 µg/

mL), sodium selenite (5 ng/mL) in Dulbecco's Modified Eagle Medium (Life Technologies), 

reagents from Sigma Aldrich unless otherwise specified) and plated at a density of 104 

cells/mL in a humidified incubator at 37°C, 20% O2, and 5% CO2. NPSCs were cultured as 

non-adherent neurospheres in working NPSC medium, passaged by mechanical dissociation, 

and utilized for experiments between passages 3 through 6.

2.4. NPSC Response to Varied HA-Lm Gel Formulations

Gels were varied in HA and laminin concentration (Table 1) and optimized based on cellular 

response—i.e. NPSC viability, density and chain formation. HA concentrations (1.75 wt%, 

2.00 wt%, 2.25 wt%) were selected based on previously reported rheological data for HA-

PEGDVS gels [33] to mimic the stiffness of native neural tissue (0.2–1.0kPa) [35] and on 

observations that gels below 1.75 wt% HA did not support effective NPSC encapsulation 
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necessary for transplantation. Laminin concentrations (0%, 0.005%, 0.01%, 0.015%) were 

selected based on hydrogels in the literature and as an extrapolation of our 2D ECM culture 

model [29,31,36]. HA-Lm gel films (100 µm thickness) were formed in 24-well plates 

(occupying approximately 85% of the well bottom) at 37 °C for 15 hours, and single cell 

NPSC suspensions (2×103 cells/well) were seeded directly on top of the gel. NPSCs were 

incubated for 1 hour to allow for adherence to the HA-Lm gel prior to the addition of 500 µL 

of mitogenic growth factor-free NPSC media to each well. NPSCs were cultured for 72 

hours prior to analysis of viability, density, and chain formation.

2.4.1. Cell Density and Viability—After rinsing HA-Lm gels with sterile phosphate 

buffered saline, NPSCs were stained with Live/Dead assay (Biotium, Hayward, CA). Live 

cell counts were used to calculate cell density (cells/cm2) as a measure of cell attachment to 

the HA-Lm gel. Fluorescent red (dead) and green (live) channel images (n=6 gels per goup, 

n=3 ROI per gel) were analyzed for number of positively stained cells using the particle 

counter plugin for Image J (NIH, Bethesda, MD) and reported as percent viability.

2.4.2. Chain Length—It was observed that gel formulations which supported high cell 

density and viability also supported the formation of chain-like NPSC assemblies as defined 

by two or more NPSCs visibility connected by continuous outgrowth in a linear fashion. 

Therefore, NPSC chain length was measured in MatLab as a tertiary metric for gel 

formulation optimization after 72 hours of culture on HA-Lm gels. Live cell images (n=6 

gels per goup, n=3 ROI per gel) were analyzed for longest linear chain length in each frame.

2.5 Physical Properties of HA-Lm Gel

2.5.1. HA-Lm gel stiffness—Parallel plate rheological measurements were used to 

determine the storage and loss moduli of HA-Lm gels during gelation (Physica MCR101, 

Anton Paar, Graz, Austria). Briefly, 500 µL HA-Lm solutions were pipetted onto the fixed 

plate immediately following mixing and the moving plate was lowered to a height of 

0.5mm. The gels were tested at 0.5 % strain with an oscillatory frequency of 1 Hz. The stage 

was heated to 37°C and maintained within a humid environmental chamber. Storage and 

loss moduli measurements were taken continuously for 6 hrs.

2.5.2. HA-Lm gel porosity and microstructure—HA-Lm gels (7 mm thickness) were 

formed in 96 well plates for 15 hours, dehydrated through immersion in a series of ethanol 

washes and subsequently dried with the Balzers CPD020 critical point dryer (Balzers Union 

Ltd., Liechtenstein) using liquid carbon dioxide as the transition solvent. Samples were cut 

open to expose interior microstructures, sputter coated with gold/palladium (60:40) using a 

Technics Hummer Sputter Coater (Anatech Ltd., Alexandria, VA) and imaged via scanning 

electron microscopy (SEM) on an XL30 ESEM-FEG (FEI, Hillsboro, OR) with a 5kV beam 

and spot size of 3. Images were analyzed in Matlab for pore diameter and aspect ratio (n=3 

images, 90–120 pores quantified per image).

2.6. NPSC CXCR4 Expression on HA-Lm Gel

2.6.1. Temporal CXCR4 Expression—HA-Lm gel films (Low HA/Moderate Lm, 100 

µm thickness) were formed in the bottom of 6 well plates and allowed to gel for 15 hours in 
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humid conditions at 37°C (n=3). NPSCs were seeded in mitogenic growth factor-free media 

as single cell suspension (5 × 105 cells/mL) directly on top of the films. NPSCs seeded on 

poly-L-lysine coating (PLL, 10µg/cm2, MP Biomedicals, Solon, OH) or maintained in non-

adherent conditions served as controls. NPSCs were allowed to adhere for 1 hour prior to 

taking baseline samples (time 0). After culture for 0, 24, 48 and 72 hours, cells were lysed 

by mechanical agitation in cold RIPA buffer (Bioworld, Dublin, OH) containing proteinase 

inhibitor cocktail (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA1, % NP-40, 0.5% Sodium 

Deoxycholate, 0.1% SDS, 0.1% protease inhibitor cocktail (Sigma)). Protein concentration 

was determined by bicinchoninic acid assay (G-Biosciences, St. Louis, MO) prior to SDS-

PAGE electrophoresis in 12% bis-acrylamide gels and western blotting for NPSC CXCR4 

expression using β-actin to control for loading variability (rabbit anti-CXCR4, 39 kDa, cat 

no: 2074, Abcam, Cambridge, England; mouse anti-β-actin, 45 kDa, cat no: 926-42212, LI-

COR, Lincoln, NE). The Odyssey Infrared Imaging System (LI-COR) was used to visualize 

bands stained with appropriate secondary antibodies (donkey anti-rabbit IRDye 800; donkey 

anti-mouse IRDye 680, LI-COR). Band density was quantified with the Image Studio 

software (LI-COR), normalized internally to β-actin and externally to non-adherent control 

culture samples and reported as relative density.

2.6.2. Mechanistic CXCR4 Expression—HA-Lm gels were formed as in the temporal 

CXCR4 expression experiments. NPSCs (5 × 105 cells/mL) were seeded on HA-Lm gels or 

on HA only gels. Prior to seeding, NPSCs were either pre-treated with anti-CD44 

(100µg/mL) to inhibit HA interactions or its isotype control for 45 minutes at 37°C (rat anti-

CD44, Millipore, Darmstadt, Germany; rat IgG1 κ isotype control, BioLegend, San Diego, 

CA) or received no pre-treatment. NPSCs were cultured for 0 and 48 hours, lysed and 

analyzed by western blotting for CXCR4 expression as reported for temporal CXCR4 

expression experiments (rabbit anti-CXCR4, Abcam; mouse anti-beta actin, LI-COR).

2.7. Chemotactic NPSC Migration

HA-Lm gels (1 mm thickness) were formed at the bottom of 24 well plate 8 µm pore size 

Transwell inserts (Corning Inc., Corning, NY) and allowed to gel for 15 hours at 37°C in 

humid conditions (n=3 per group). Groups, as outlined in Table 2, included HA only gels, 

HA-Lm gels only or HA-Lm gels impregnated with the CXCR4 antagonist AMD3100 (5 

µg/mL; Santa Cruz Biotechnology, Santa Cruz, CA), rat anti-CD44 (100 µg/mL; Millipore), 

or an anti-CD44 isotype control (100 µg/mL; rat IgG1 κ BioLegend). NPSCs were then 

seeded directly on top of the gels (105 cells/mL) and cultured for 24 and 48 hours in 

mitogenic growth factor-free media. NPSCs seeded onto impregnated gels were incubated 

with their respective supplementation at the appropriate concentration for 45 minutes at 37 

°C prior to seeding. As described in Table 2, HA-only or HA-Lm gels were exposed to no 

SDF-1α, uniform SDF-1α or a gradient of SDF-1α. Uniform SDF-1α gels were allowed to 

saturate with SDF-1α (1 µg/mL; PeproTech Inc., Rocky Hill, NJ) prior to NPSC seeding and 

supplemented with 1 µg/mL SDF-1α in both the top and bottom Transwell chambers, while 

gradient SDF-1α gels were not pre-saturated and the gradient was maintained out to 48 

hours. SDF-1α concentration of 1 µg/mL was determined based on previous studies in 

NPSCs [29]. Effective SDF-1α gradient maintenance out to 48 hours was validated by 

enzyme-linked immunosorbent assay (ELISA, Supplementary Figure 2). Briefly, gels were 
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formed in Transwell inserts and exposed to SDF-1α gradients as in chemotactic experiments 

for 12, 24 or 48 hours (n=3 per time point). SDF-1α concentration of both the lower 

chamber (donor) and upper chamber (receptor) of the Transwell insert (Supplementary 

Figure 2) were determined by ELISA. At 24 and 48 hours, NPSCs that had migrated through 

the gel to the Transwell membrane were stained with DAPI and counted using the cell 

counter ImageJ plugin (NIH, Bethesda, MD).

2.8 Statistical Analysis

Two-way ANOVA with Tukey’s post hoc test was performed for all experiments where 

statistical analysis was used (NPSC density, viability, chain length, temporal CXCR4 

expression and mechanistic CXCR4 expression), where α=0.05 in Prism 6 (GraphPad, Inc., 

La Jolla, CA).

3. Results

3.1. Formation of HA-Lm Gel Components

Successful thiolation of HA was evidenced by the appearance of thiol peaks (2.5 and 2.7 

ppm) in the 1H NMR spectrum of HA-S compared to that of HA prior to thiolation (Figure 

1A). Moreover, covalent immobilization of laminin to PEG-DVS was apparent through both 

the appearance of peptide peaks in the NMR spectrum of PEG-DVS (Figure 1B) and the 

reduction of free vinyl groups relative to PEG groups in PEG-DVS (Figure 1C). 

Collectively, these data indicate that our methods for formulating HA-Lm gel components 

enable the covalent immobilization of laminin within an HA hydrogel.

3.2. NPSCs Survive and Spread on HA-Lm Gels at 72 hours

NPSC density after 72 hours of culture on HA-Lm gels was found to be significantly higher 

on gels with lower HA concentrations and higher laminin concentrations (Low HA/ 

Moderate and High Lm) compared to all other groups, as illustrated in Figure 2A and 

Supplementary Figure 1 (p<0.0001). Moreover, Low HA/ Moderate and High Lm gels were 

the only gels to support NPSC density increase above the initial plating density (Figure 2A). 

In quantifying percent viability, groups with low cell density yielded high variance in 

percent viability; therefore, groups with a coefficient of variance above 30% were omitted 

from statistical analysis (omitted groups included High HA gels and No Lm gels). NPSC 

viability was significantly higher on gels with lower HA concentrations and higher Lm 

concentrations (Low HA/Moderate and High Lm) compared to all other groups (p=0.0177, 

0.0026, respectively). Moreover, NPSC chain length was significantly higher on gels that 

supported high NPSC density and viability (Low HA/ Moderate and High Lm) as compared 

to all other groups (p<0.0001) and on Moderate HA/ High Lm gels compared to all other 

Moderate HA gels (p=0.0016; Figure 3). Overall, Low HA/Moderate and High Lm gels 

supported the highest NPSC density and viability and longest NPSC chain length. The Low 

HA/Moderate Lm gel formulation was chosen for subsequent experimentation to minimize 

laminin reagent consumption.

Addington et al. Page 7

Biomaterials. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. HA-Lm Gel Physical Properties are Relevant to Native Neural Tissue

The storage modulus of HA-Lm gels (Low HA/Moderate Lm) was measured as 1.02 kPa by 

rheology after gelation for 6 hours (G’, Figure 4A), which mimics the stiffness of native 

neural tissue (0.2–1kPa) [35]. Gelation time was 24 minutes at 37°C in humid conditions as 

indicated by the increase in storage modulus over the loss modulus (Figure 4A). SEM 

images illustrated a highly porous microstructure within the HA-Lm gel with pore size 

ranging from 2–17 µm and an average aspect ratio of 2.12 (Figure 4B), providing 

appropriate porosity for cellular infiltration.

3.4. HA-Lm Gel Upregulates NPSC CXCR4 Protein Expression

NPSC CXCR4 expression was significantly increased after 48 hours of culture on HA-Lm 

gel compared to NPSCs cultured on poly-L-lysine (PLL) at all time points (p=0.0408) and to 

NPSCs cultured on HA-Lm gel for 24 (p=0.0145) and 72 hours (p=0.0097). After 72 hours 

of culture, CXCR4 expression on HA-Lm gel returned to basal PLL CXCR4 expression 

levels (Figure 5). The significant increase in CXCR4 expression observed at 48 hours on 

HA-Lm gel was abrogated by inhibiting HA interactions with anti-CD44 (Figure 6A,B). 

CXCR4 expression after 48 hours of culture on HA-Lm gel impregnated with anti-CD44 

was significantly reduced compared to that on HA-Lm gel without supplementation 

(p<0.0001) and was not significantly different from CXCR4 expression on PLL at 48 hours 

(Figure 6B). Moreover, this reduction was due to HA interaction inhibition and not simply 

to antibody supplementation as CXCR4 expression on gels impregnated with anti-CD44 

isotype control was not significantly different from that on HA-Lm gels without 

supplementation (Figure 6B). NPSC adherence, and subsequently cell lysate protein 

concentration, was too low on HA only gels to allow for visualization of CXCR4 expression 

by western blotting.

3.5. HA-Lm Gel Promotes NPSC Chemotactic Migration in Response to SDF-1α Gradients

The Transwell culture set-up successfully maintained an SDF-1α concentration gradient 

throughout the experiment, as determined by ELISA. After 48 hours, the SDF-1α 

concentration in the donor (lower chamber) was 1.6-fold higher than that in the receptor 

(upper chamber) (Supplementary Figure 2). Correspondingly, NPSC migration in response 

to SDF-1α gradient was significantly increased at 48 hours when compared either to 24 

hours of migration in a gradient, or to any time point in response to uniform SDF-1α 

concentration or no SDF-1α (Figure 7A–C,J; p=0.0067, <0.0001 respectively). A 3.8-fold 

increase in migration over uniform and no SDF-1α was also observed at 24 hours, however 

it was not significant (p=0.0676). Moreover, SDF-1α gradients play a critical role in 

mediating this response as evidenced by the reduction of NPSC migration to basal levels 

with the addition of the CXCR4 antagonist AMD3100 (Figure 7D,H). The addition of 

AMD3100 significantly reduced NPSC migration compared to HA-Lm gels without 

AMD3100 at both 24 and 48 hours (Figure 7J, p=0.0299, <0.0001 respectively). Conversely, 

NPSC migration in HA-Lm gels+AMD3100 was not significantly different from uniform 

and no SDF-1α groups at either 24 or 48 hours.
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3.6. Enhanced NPSC Chemotactic Response in HA-Lm Gel Requires both HA and Lm

NPSC chemotactic migration was attenuated when laminin was excluded from the gel and 

abrogated when HA interactions were blocked with an antibody against HA receptor CD44 

(Figure 8). At both 24 and 48 hours, NPSC chemotactic migration was significantly reduced 

on HA-only gels compared to HA-Lm gels (p=.0085, <0.0001 respectively). Interestingly, in 

HA-only gels NPSC migration at 48 hours increased 4.7-fold over that at 24 hours, although 

the difference was not statistically significant. While a low level of chemotactic migration 

was preserved in the absence of laminin, inhibiting HA interactions with anti-CD44 

abrogated NPSC chemotactic migration such that it was 10- and 8-fold less than NPSC 

chemotactic migration on HA-Lm gels at 24 and 48 hours, respectively. This significant 

decrease in NPSC migration in HA-Lm+anti-CD44 gels compared to HA-Lm gels at 24 and 

48 hours (p=0.0046, <0.0001 respectively) was specifically due to HA interaction inhibition 

rather than to antibody supplementation as the isotype control for anti-CD44 did not affect 

NPSC migration.

4. Discussion

Historically, neural progenitor/stem cell (NPSC) transplantation following TBI has been 

plagued by low survival rates (2–4%) and poor engraftment into the surrounding tissue, 

which has impeded the full realization of NPSC transplant potential as a therapeutic 

intervention following TBI [8,37,38]. Some groups have turned to tissue engineered 

scaffolding to improve cell transplant survival and engraftment following TBI [39–41], 

while others have primed transplants biochemically for the injury microenvironment (i.e. 

CXCR4-overexpressing transplants) and observed increased viability and engraftment in the 

surrounding tissue [42,43]. While both approaches have yielded moderate improvements in 

transplant survival and engraftment, a dual-purpose hydrogel that simultaneously primes 

NPSC transplants for the injury microenvironment and provides the appropriate ECM 

infrastructure could offer the benefits of a multi-component transplant system while 

minimizing complexity.

Neural tissue engineered scaffolds have largely focused on mimicking the neural niche 

environment so as to provide cell transplants with an environment permissive to NPSC 

survival and engraftment. The mechanical properties of the niche are most often re-created 

in hydrogels for neural tissue engineering as they can be tuned to mimic the stiffness of 

native neural tissue. Our HA-Lm gel has mechanical properties similar to the neural niche 

(1.02 kPa storage modulus [35], Figure 4), providing the appropriate mechanical cues to 

NPSCs. This point is reflected in the significantly higher NPSC viability and density 

observed on low HA gels compared to moderate and high HA gels (Figure 2). Given that 

HA content correlates with gel stiffness [33], it can be postulated that the mechanical 

properties of the low HA gels are better suited for maintenance of NPSC culture than those 

of the higher HA content gels. However, the niche provides more than just mechanical cues 

to its resident NPSCs; it also provides critical ECM and soluble signals.

Others have looked at incorporating peptide binding motifs (i.e. RGD or laminin binding 

domain [21,28]) and ECM proteins (i.e. fibronectin, collagen I, laminin [39,44–46]) within 

hydrogels to promote cell adhesion, however peptide binding motifs may not fully capture 
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the functionality of the ECM protein they are intended to mimic and fibronectin and 

collagen I are not native to neural tissue. The vascular basement membrane protein laminin 

provides relevant ECM signaling to NPSCs in the subventricular niche where endogenous 

NPSCs have been shown to leave and home to the site of injury by way of the surrounding 

vasculature [47,48]. In our system, the inclusion of laminin significantly increased NPSC 

density, viability and chain formation compared to HA gels without laminin (Figures 2 and 

3). Moreover, we have previously observed that signaling crosstalk between laminin and 

SDF-1α synergistically increases NPSC chemotactic migration [29]. Collectively, these data 

illustrate the significant role that laminin plays in regulating NPSC migratory behaviors in 

response to injury-relevant signaling.

Laminin alone does not comprise the niche and, as such, will not fully recapitulate the niche 

ECM environment for NPSC transplants. Within the subventricular niche, the 

glycosaminoglycan hyaluronic acid (HA) has been found at higher concentrations than 

elsewhere in the adult brain [18,49]. Interestingly, evidence of signaling crosstalk between 

the HA receptor CD44 and laminin was observed by Deboux et al., in which CD44-

overexpressing NPSCs plated on laminin were observed to increase spreading and 

outgrowth [50], suggesting that the roles of laminin and HA in regulating NPSC fate within 

the niche environment may be more interconnected than previously described. Our data 

illustrate the critical individual roles that laminin and HA play in providing NPSCs with a 

substrate to support adherence and migration (laminin) and a substrate to regulate the NPSC 

receptor expression profile (HA). Upon inhibiting HA interactions, NPSCs remained 

adhered to the HA-Lm gel but their CXCR4 protein expression was significantly attenuated 

whereas excluding laminin abrogated NPSC adherence, leaving the system irrelevant for 

transplantation applications (Figure 5). CXCR4 protein expression within the adult brain is 

restricted to NPSCs, as such, maintenance of this phenotypic marker without compromising 

NPSC adhesion and migration may be attributed to the specialized microenvironment of the 

niche [51]. Therefore, we postulate that the ECM signals provided to NPSCs by the HA-Lm 

gel are more comprehensive in their recapitulation of the niche ECM environment than 

previously developed hydrogel systems.

Increases in CXCR4 protein expression on the HA-Lm gel directly correlated with increased 

NPSC chemotactic migration in response to gradients of the injury-relevant chemokine 

SDF-1α. Inhibiting NPSC interaction with either component of the gel significantly reduced 

chemotactic migration in response to SDF-1α gradients indicating the synergistic effect that 

HA and laminin have on promoting NPSC chemotactic response to SDF-1α (Figure 8). 

Previous studies on NPSC migration in response to SDF-1α gradients when plated on 

laminin in 2D yielded data similar to that observed here for HA-Lm gels impregnated with 

anti-CD44 [29]. Increased NPSC chemotactic migration on HA-Lm gels is critically 

dependent on SDF-CXCR4 interactions as inhibition of this signaling axis with CXCR4 

antagonist AMD3100 reduced NPSC migration to levels comparable to that on HA-Lm gel 

with either uniform or no SDF-1α (Figure 8); however, it is important to consider alternative 

mechanisms that may contribute to increased NPSC migration within the HA-Lm gel. CD44 

interaction with HA has been observed to precede and facilitate the formation of focal 

adhesions in other cell types [52,53] and it is thought that CD44 works closely with integrin 

β1 to promote transmigration of intravenously injected NPSCs as they migrate towards 
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regions of neural injury [50,54]. Therefore, the role of HA within the HA-Lm gel may not 

only be to promote CXCR4 expression but also to promote adhesion and migration on 

laminin. To this end, the results of using of laminin peptide sequences instead of full-length 

laminin could raise interesting questions regarding the distinct roles of HA and laminin 

within the gel. Given the mechanistic ambiguity surrounding potential crosstalk between HA 

and laminin, we feel that the inclusion of full-length laminin may more effectively allow 

these signaling events to occur. However, future mechanistic studies investigating the 

distinct role of laminin within the gel may utilize such peptides.

Interestingly, NPSC chemotactic response to SDF-1α was not completely abrogated after 48 

hours of culture on HA-only gels (Figure 8). NPSCs cannot form focal adhesions to HA 

alone as HA interactions are mediated by receptor CD44 and the hyaluronan-mediated 

motility receptor (RHAMM), not by integrins [55]. Given that NPSC migration in 2D is 

typically focal adhesion-dependent [56,57], the chemotactic migration of NPSCs within an 

HA-only gel was a very intriguing finding. Moreover, NPSC adherence to HA only gels in 

the absence of SDF-1α was minimal (Figure 6), leading us to suspect an interaction between 

HA and SDF-1α that may alter NPSC adhesion and migration behaviors. We postulate two 

potential scenarios in which NPSCs may migrate through HA-only gels in the presence of 

SDF-1α: 1. HA may promote NPSC ECM production and 2. NPSCs may exhibit migratory 

mode plasticity dependent on environmental conditions. HA has been observed to induce the 

production of integrin-binding osteopontin and collagens in other cell types [58,59]. 

Moreover, astrocytes are known to secrete ECM in vitro [60] and given the heterogeneous 

nature of the neurosphere assay [61,62], there may be a subset of NPSCs capable of 

secreting ECM within the HA only gel. NPSC migration through HA only gels was only 

observed after 48 hours, thus it is feasible that matrix is being produced on which the NPSCs 

are then able to migrate in a more typical focal adhesion-mediated manner, however further 

investigation is necessary to elucidate the potential formation of focal adhesions in this 

context, particularly in light of low NPSC adherence to HA only gels in the absence of 

SDF-1α. Alternatively, NPSC migration mechanisms may be more adaptive than previously 

described as environment-dependent migration mode plasticity has been observed in other 

cell types (i.e. 2D versus 3D [63,64]). In 3D, cells do not appear to form stable focal 

adhesions during migration but may instead depend on pseudopodia to move through the 

ECM [65,66]. Transient cell-matrix and cell-cell adhesion is also found in NPSCs migrating 

by chain migration mechanisms through the rostral migratory stream (RMS), an area with 

high concentrations of HA in the adult brain [18]. While chain migration on HA in the RMS 

draws an interesting conceptual parallel with data presented here, NPSC chain migration has 

been observed to be dependent on β1 integrin signaling and as such would still require a 

substrate that supports β1 integrin binding [67]. Interestingly, Avigdor et al. have proposed 

that SDF-1α may function to increase CD44 avidity to HA in HSCs, allowing for increased 

HSC retention in SDF-1α rich niches independent of integrin anchoring [25]. Investigating 

HA-SDF-1α interaction by this mechanism and probing for the formation of focal adhesions 

in NPSCs migrating on HA-only gels in response to SDF-1α gradients would enlighten 

these postulations and provide insight into the mechanisms by which NPSCs are migrating 

in this context.
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Regardless of mechanism, the capacity of NPSCs to migrate through the bulk of the HA-Lm 

gel, as opposed to on top of it or along an interface, indicates the relevancy of the gel to in 

vivo transplantation applications as these cells would be tasked with migration through the 

bulk of the gel into the surrounding tissue post-transplantation. Thus, NSPC migration 

through the HA-Lm gel provides motivation for future work investigating its effects after 

neural injury.

5. Conclusions

Given the local increases in SDF-1α after brain injury and the critical role that others have 

found SDF-1α to play in regulating NPSC fate after brain injury, increasing NPSC response 

to SDF-1α may serve as a viable approach to improving NPSC transplant efficacy following 

TBI. We have shown here that our HA-Lm gel both biochemically primes NPSCs for the 

injury microenvironment by upregulating the SDF-1α receptor CXCR4 and provides the 

appropriate ECM cues to promote migration in response to SDF-1α. Therefore, this platform 

may serve to improve transplant efficacy by providing transplants with the tools to 

dynamically respond to the injury microenvironment.
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Figure 1. 
Gel formulation proof of concept. Successful HA thiolation was evidenced by the 

appearance of thiol group peaks (red rectangle) in the NMR spectra of HA-S compared to 

HA (A). Laminin was covalently immobilized to PEGDVS as evidenced by the appearance 

of peptide peaks (red rectangles) in the NMR spectra of PEGDVS-Lm compared to 

PEGDVS (B). The PEGDVS-Lm spectra had a marked reduction in the ratio of free vinyl 

groups to PEG groups compared to PEGDVS (C), indicative of vinyl groups having bound 

to laminin free thiols.

Addington et al. Page 17

Biomaterials. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
NPSC density and viability after 72 hours of culture on a spectrum of gel formulations. 

NPSC density was significantly higher on gels with low HA and moderate and high Lm 

content compared to all other gels formulations and these were the only formulations in 

which density increased over the plating density (A). Moderate HA/High Lm supported 

significantly higher NPSC density than other moderate HA formulations, but it did not 

exceed the initial plating density. Low HA/Moderate and High Lm gels supported 

significantly higher NPSC viability compared to the Low HA/Low Lm gel and to the 

Moderate HA/Low and Moderate Lm gels (B). **p<0.01 compared to Low HA/No and Low 

Lm gel, all Moderate and High HA gels; #p<0.05 compared to other Moderate HA 

gels;*p<0.05 compared to all Low Lm gels and Moderate HA/Moderate Lm gel.
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Figure 3. 
NPSC chain length after 72 hours of culture on a spectrum of gel formulations. Chain length 

was measured in Matlab as a tertiary metric for gel optimization, where chainlike assemblies 

were defined as one or more NPSCs continuously connected via neurite outgrowth in a 

linear fashion (A,B). Chain length on low HA/Moderate and High Lm gels was significantly 

longer compared to all other gel formulations (C). Chain length on Moderate HA/High Lm 

gels was significantly longer than all other Moderate HA gels. **p<0.01 compared to Low 

HA/No and Low Lm gel, all Moderate and High HA gels; #p<0.05 compared to other 

Moderate HA gels. Scale bar is 100 microns.
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Figure 4. 
Physical properties of the Low HA/Moderate Lm gel. HA-Lm gel storage modulus was 1.02 

kPa, which is similar to that to native neural tissue (0.2–1.0 kPa) and gelation time was 24 

minutes (A). SEM images illustrate that the microstructure is highly porous with 

interconnected pores ranging from 2–17 µm with an average aspect ratio of 2.12. Scale bar is 

20 µm
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Figure 5. 
HA-Lm gel promotes NPSC CXCR4 upregulation after 48 hours of culture. As determined 

by western blotting, NPSC CXCR4 protein expression on HA-Lm gel (Low HA/Moderate 

Lm) is significantly increased compared to PLL at all time points and to HA-Lm gel at all 

other times points (A,B). CXCR4 expression normalized internally to beta-actin expression 

and externally to CXCR4 expression in non-adherent culture (NA). *p<0.05 compared to all 

other time points and culture conditions.
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Figure 6. 
HA-Lm gel-mediated NPSC CXCR4 upregulation is critically dependent on HA. Inhibition 

of HA with function blocking anti-CD44 abrogates CXCR4 upregulation at 48h (A,B). 

These differences were specifically due to HA inhibition as CXCR4 expression with isotype 

control supplementation was not significantly different from HA-Lm gel at 48h (B). 

Exclusion of Lm within the gel did not allow for sufficient adherence of NPSCs to the gel 

and thus protein levels were too low for effective detection by western blotting, leaving the 
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system irrelevant for transplantation. *p<0.05 compared to HA-Lm gel at 48 hr; ns = not 

significantly different from HA-Lm gel at 48 hr.
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Figure 7. 
HA-Lm gel supports NPSC chemotactic migration in response to SDF-1α gradients. NPSC 

migration within Transwell set up (I) is not significantly different in the absence of SDF-1α 

(A,E) compared to uniform SDF-1α concentration (B,F) at 24 and 48 h. In response to a 

SDF-1α gradient, NPSC migration increases at 24 h and significantly increases at 48 h 

compared to NPSCs not exposed to a SDF-1α gradient (J). This response is specifically 

mediated by SDF-1α as inhibiting its activity with AMD3100 reduced NPSC migration to 

levels observed in the absence of SDF-1α gradients. Scale bar is 150 microns, **p<0.01 

compared to all other groups.
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Figure 8. 
NPSC chemotactic migration within HA-Lm gel is critically dependent on both HA and 

laminin. NPSC migration is significantly decreased on HA only gels compared to on HA-

Lm gels at both 24 (A,D) and 48 hours (E,H). Moreover, NPSC migration is significantly 

decreased when HA signaling is inhibited with anti-CD44 at 24 (B) and 48 (F) hours 

compared to migration on HA-Lm gel (I). Reduced NPSC migration is due specifically to 

CD44 inhibition as the appropriate isotype control does not significantly affect NPSC 

migration. Scale bar is 150 microns, *p<0.01 compared to other groups of same time point, 

#p<0.005 compared to HA-Lm at 48 hours, ns = not significantly different from HA-Lm gel 

group of same time point.
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Table 1

HA-Lm gel formulation naming convention. NPSC response was studied on all combinations of HA and 

laminin w/v percentages. Gel formulations will be referenced according to labels that provide relative 

descriptions of HA and laminin content. For example, a 1.75% HA/0.010% Lm gel will be referenced as a 

Low HA/Moderate Lm gel throughout the text.

Label HA w/v Laminin w/v%

No N/A 0.000

Low 1.75 0.005

Moderate 2.00 0.010

High 2.25 0.015
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Group Gel SDF-1α
Exposure

Inhibitor
Supplementation

1 HA-Lm None None

2 HA-Lm Uniform None

3 HA-Lm Gradient None

4 HA-Lm Gradient AMD3100

5 HA-Lm Gradient anti-CD44

6 HA-Lm Gradient anti-CD44 isotype control

7 HA only Gradient None
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